Parametric mixed-integer 0-1 linear programming: The general case for a single parameter
نویسندگان
چکیده
Two algorithms for the general case of parametric mixed-integer linear programs (MILPs) are proposed. Parametric MILPs are considered in which a single parameter can simultaneously influence the objective function, the right-hand side and the matrix. The first algorithm is based on branch-and-bound on the integer variables, solving a parametric linear program (LP) at each node. The second algorithm is based on the optimality range of a qualitatively invariant solution, decomposing the parametric optimization problem into a series of regular MILPs, parametric LPs and regular mixed-integer nonlinear programs (MINLPs). The number of subproblems required for a particular instance is equal to the number of critical regions. For the parametric LPs an improvement of the well-known rational simplex algorithm is presented, that requires less consecutive operations on rational functions. Also, an alternative based on predictor– corrector continuation is proposed. Numerical results for a test set are discussed. 2008 Elsevier B.V. All rights reserved.
منابع مشابه
Parametric Tabu Search for 0-1 Mixed Integer Programming: a Computational Study
We present a computational study of parametric tabu search for solving 0-1 mixed integer programming (MIP) problems, a generic heuristic for general MIP problems. This approach solves a series of linear programming problems by incorporating branching inequalities as weighted terms in the objective function. New strategies are proposed for uncovering feasible and high-quality solutions and exten...
متن کاملGlobal optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory
Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...
متن کاملWell-dispersed subsets of non-dominated solutions for MOMILP problem
This paper uses the weighted L$_1-$norm to propose an algorithm for finding a well-dispersed subset of non-dominated solutions of multiple objective mixed integer linear programming problem. When all variables are integer it finds the whole set of efficient solutions. In each iteration of the proposed method only a mixed integer linear programming problem is solved and its optimal solutions gen...
متن کاملSolving Single Machine Sequencing to Minimize Maximum Lateness Problem Using Mixed Integer Programming
Despite existing various integer programming for sequencing problems, there is not enoughinformation about practical values of the models. This paper considers the problem of minimizing maximumlateness with release dates and presents four different mixed integer programming (MIP) models to solve thisproblem. These models have been formulated for the classical single machine problem, namely sequ...
متن کاملRESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE
In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 194 شماره
صفحات -
تاریخ انتشار 2009